

MANGO

Project reference: 671668 Funded under: H2020-EU.1.2.2.

MANGO: exploring Manycore Architectures for Next-GeneratiOn HPC systems

From 2015-10-01 to 2018-10-01, ongoing project

Project details

Total cost:	Topic(s):
EUR 5 801 820	FETHPC-1-2014 - HPC Core Technologies, Programming Environments and
EU contribution:	Algorithms for Extreme Parallelism and Extreme Data Applications
EUR 5 801 820	Call for proposal:
Coordinated in:	H2020-FETHPC-2014
Spain	Funding scheme:
	RIA - Research and Innovation action

Objective

MANGO targets to achieve extreme resource efficiency in future QoS-sensitive HPC through ambitious cross-boundary architecture exploration for performance/power/predictability (PPP) based on the definition of new-generation high-performance, power-efficient, heterogeneous architectures with native mechanisms for isolation and quality-of-service, and an innovative two-phase passive cooling system. Its disruptive approach will involve many interrelated mechanisms at various architectural levels, including heterogeneous computing cores, memory architectures, interconnects, run-time resource management, power monitoring and cooling, to the programming models. The system architecture will be inherently heterogeneous as an enabler for efficiency and application-based customization, where general-purpose compute nodes (GN) are intertwined with heterogeneous acceleration nodes (HN), linked by an across-boundary homogeneous interconnect. It will provide guarantees for predictability, bandwidth and latency for the whole HN node infrastructure, allowing dynamic adaptation to applications. MANGO will develop a toolset for PPP and explore holistic pro-active thermal and power management for energy optimization including chip, board and rack cooling levels, creating a hitherto inexistent link between HW and SW effects at all layers. Project will build an effective large-scale emulation platform. The architecture will be validated through noticeable examples of application with QoS and high-performance requirements.

Ultimately, the combined interplay of the multi-level innovative solutions brought by MANGO will result in a new positioning in the PPP space, ensuring sustainable performance as high as 100 PFLOPS for the realistic levels of power consumption (<15MWatt) delivered to QoS-sensitive applications in large-scale capacity computing scenarios providing essential building blocks at the architectural level enabling the full realization of the ETP4HPC strategic research agenda

Coordinator

UNIVERSITAT POLITECNICA DE VALENCIA Spain Spain EU contribution: EUR 418 875

Participants

Centro Regionale Information Communication Technology scrl Italy

POLITECNICO DI MILANO Italy

SVEUCILISTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RACUNARSTVA Croatia

PRO DESIGN Electronic GmbH Germany

THALES COMMUNICATIONS & SECURITY SAS France

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE Switzerland

PHILIPS MEDICAL SYSTEMS NEDERLAND BV Netherlands

EATON INDUSTRIES (FRANCE) SAS France

Last updated on 2015-07-13 Retrieved on 2015-11-16

Permalink: http://cordis.europa.eu/project/rcn/197942_en.html © European Union, 2015

Italy EU contribution: EUR 571 250

Italy EU contribution: EUR 646 875

Croatia EU contribution: EUR 436 000

Germany EU contribution: EUR 1 860 963,75

France EU contribution: EUR 452 207,5

Switzerland **EU contribution:** EUR 522 083,75

Netherlands EU contribution: EUR 495 940

France EU contribution: EUR 397 625

